Correlation Clustering with Constrained Cluster Sizes and Extended Weights Bounds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlation Clustering with Constrained Cluster Sizes and Extended Weights Bounds

We consider the problem of correlation clustering on graphs with constraints on both the cluster sizes and the positive and negative weights of edges. Our contributions are twofold: First, we introduce the problem of correlation clustering with bounded cluster sizes. Second, we extend the region of weight values for which the clustering may be performed with constant approximation guarantees in...

متن کامل

Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection

Constrained spectral clustering (CSC) method can greatly improve the clustering accuracy with the incorporation of constraint information into spectral clustering and thus has been paid academic attention widely. In this paper, we propose a fast CSC algorithm via encoding landmark-based graph construction into a new CSC model and applying random sampling to decrease the data size after spectral...

متن کامل

Clustering in Trees: Optimizing Cluster Sizes and Number of Subtrees

This paper considers partitioning the vertices of an n-vertex tree into p disjoint sets C1, C2, . . . , Cp, called clusters so that the number of vertices in a cluster and the number of subtrees in a cluster are minimized. For this NP-hard problem we present greedy heuristics which differ in (i) how subtrees are identified (using either a best-fit, good-fit, or first-fit selection criteria), (i...

متن کامل

Constrained Approximation with Jacobi Weights

In this paper, we prove that for l = 1 or 2 the rate of best l-monotone polynomial approximation in the Lp norm (1 ≤ p ≤ ∞) weighted by the Jacobi weight wα ,β(x) ∶= (1 + x)α(1 − x)β with α, β > −1/p if p <∞, or α, β ≥ 0 if p =∞, is bounded by an appropriate (l + 1)-st modulus of smoothness with the same weight, and that this rate cannot be bounded by the (l+2)-ndmodulus. Related results on con...

متن کامل

Geometric Clustering to Minimize the Sum of Cluster Sizes

We study geometric versions of the min-size k-clustering problem, a clustering problem which generalizes clustering to minimize the sum of cluster radii and has important applications. We prove that the problem can be solved in polynomial time when the points to be clustered are located on a line. For Euclidean spaces of higher dimensions, we show that the problem is NP-hard and present polynom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2015

ISSN: 1052-6234,1095-7189

DOI: 10.1137/140994198